Année 2020-2021

LIVRET de RÉVISIONS en MATHÉMATIQUES

destiné aux élèves entrant en Seconde Générale et Technologique élaboré par les professeurs de mathématiques du collège de Betton

Présentation du livret de révisions

- ✓ Il s'agit de fiches reprenant une partie du cours vu en 3^{ème} et proposant des exercices d'entraînement, à traiter avec sérieux pendant les vacances, pour aborder l'année de 2^{nde} en mathématiques dans les meilleures conditions.
- C'est aussi un outil à conserver et consulter régulièrement car vous y retrouverez les acquis indispensables pour assimiler le programme de 2^{nde}.
 Ce n'est donc pas un banal cahier de vacances.
- ✓ Le corrigé sera disponible fin Août sur le site du collège : https://www.college-francoistruffaut-betton.ac-rennes.fr/
- ✓ Faire attention au soin et à la rédaction ; vous devez vous imposer en toutes circonstances de travailler avec rigueur.
- Si vous ne réussissez pas à faire un exercice, n'abandonnez pas, allez rouvrir votre cours de 3^{ème} pour y retrouver un exercice du même type.
- ✓ Les exercices avec * demandent un peu plus de recherche.
- N'utilisez la calculatrice que lorsque c'est vraiment nécessaire. Etre performant en calcul vous aidera fortement l'an prochain.

Les professeurs de Mathématiques du collège F Truffaut.

Aucune justification n'est attendue. A faire de préférence sans calculatrice. Il y a parfois plusieurs réponses possibles.

QCM 1 : Calcul numérique

N°	Questions	Réponses proposées			
1	-8 - (- 5) =	- 3	- 13	3	- 40
2	$5 \times (2 - 3) - 4 =$	1	3	- 9	9
3	$\frac{3}{5} - \frac{2}{3} =$	- 2 /5	1/2	- 1 15	1/8
4	$\frac{1}{7}:\frac{5}{4}=$	$-\frac{2}{5}$ $\frac{35}{4}$ $\frac{7}{10}$	$\frac{\frac{1}{2}}{\frac{5}{28}}$	<u>28</u> 5	<u>4</u> 35
5	$\left \frac{4}{5} + \frac{3}{5} \times \frac{1}{2} \right =$	7 10	11 10	28 5 7 15 5 6	
6	$-\frac{2}{3}+\frac{3}{2}=$	<u>1</u> 5	- <u>5</u>		- 1
7	$-\frac{2}{5} \times \frac{15}{7} =$	- $\frac{30}{35}$ $\frac{33}{32}$	$-\frac{14}{35} \times \frac{75}{35}$	- 17 12	- 6 7
8	$\frac{11}{8} : \frac{3}{4} =$	33 32	24 44	<u>11</u> 6	44 24
9	10 -4 =	0,0001	0,0004	- 10 000	0,000 01
10	2 ⁵ =	25	20 000	10	32
11	$4^2 \times 4^{-3} =$	4	4 - 6	16 ^{- 1}	1/4
12	L'écriture scientifique de 170 000 est :	17 × 10 ⁴	1,7 × 10 ⁴	1,7 × 10 ⁵	0,17× 10 ⁶
13	9 4=	9 × 4	9×9×9×9	262 144	6 561
14	11 -4 =	11 ⁵ x 11 ⁻⁹	11 ⁻³ × 11 ⁷	11 ⁹	11 3
15	$\frac{(-19)^{-2}}{(-19)^5} =$	19 ⁻⁷	(- 19) ^{- 7}	(- 19) ⁷	(- 19) ³
16	$(5^{3})^{2} =$	5 ⁶	5 ⁹	125 ²	5 ⁵
17	$(7 \text{ a})^2 =$	14 a ²	7 a ²	49 a	49 a ²
18	$\frac{x^2}{121} = \sqrt{100} - \sqrt{64} =$	$(\frac{x}{121})^2$	(11 x) ²	$\left(\frac{x}{11}\right)^2$	$\frac{x^2}{11^2}$ 18
19	$\sqrt{100} - \sqrt{64} =$	6	36	2	18
20	Si $\frac{2}{7} = \frac{9}{x}$, alors	$x = \frac{9 \times 7}{2}$	$x = \frac{2}{7 \times 9}$	$2 \times x = 9 \times 7$	$x = \frac{2 \times 9}{7}$

QCM 2 : Nombres entiers

	STATE OF THE PARTY	AND DESCRIPTION OF THE PARTY OF
Dám	onse A	0.4
1 = 0	onse a	Répoi
PERSONAL PROPERTY AND ADDRESS.	AND RESIDENCE AND ADDRESS OF THE PARTY.	The second section is a second

Réponse C

1 Déterminer les diviseurs d'un nombre entier

1. 1842 est divisible par :	5 et 3	2 et 3	2 et 9
2. Les diviseurs de 165 sont :	5, 11 et 3	1, 5, 11 et 165	1, 3, 5, 11, 15, 33, 55 et 165
3. 27 est un diviseur de :	189	163	324
4. La division euclidienne de 148 par 7 est :	$148 = 6 \times 21 + 22$	$148 = 7 \times 20 + 8$	$148 = 7 \times 21 + 1$
5. Le nombre de diviseurs de 90 est :	10	12	14

2 Reconnaitre un nombre premier

The state of the s			
1. Les nombres premiers inférieurs à 20 sont :	3, 5, 7, 11, 13, 17, 19	1, 2, 3, 5, 7, 11, 13, 17, 19	2, 3, 5, 7, 11, 13, 17, 19
2. 285 est-il un nombre premier ?	Non car il est divisible par 3.	Oui car il n'a que deux diviseurs.	Non car il est divisible par 5.
3. 73 est-il un nombre premier ?	Non car il est divisible par 1 et par 73.	Oui car il n'est divisible que par 1 et 73.	Non car il est divisible par 3.
4. 8 613 est-il un nombre premier ?	Oui car il n'est divisible que par 1 et 8 613.	Non car il est divisible par 3.	Non car il est divisible par 9.

3 Décomposer un entier en produit de facteurs premiers

1. Quelle ou quelles écritures sont des décompositions en produit de facteurs premiers ?	$2^2 \times 5^3 \times 7$	$5 \times 17^4 \times 23^2 \times 31$	$2\times11^4\times17^2\times39$
2. La décomposition de 120 en produit de facteurs premiers est :	$2^3 \times 3 \times 5$	2×2×2×3×5	$2^2 \times 5 \times 6$
3. La décomposition de 1 246 en produit de facteurs premiers est :	14 × 89	2×7×89	7×178
4. La décomposition de 2 100 en produit de facteurs premiers est :	$2^2 \times 3^2 \times 5^2 \times 7$	2×3×5×7×10	$2^2 \times 3 \times 5^2 \times 7$

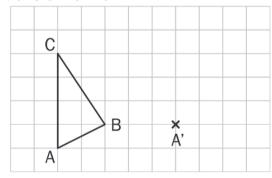
QCM:	<u>3 :</u> Calcul littéral	A	В	C
1	L'expression $5x(3x + 2)$ peut être :	factorisée par 5x	développée	factorisée par $(3x + 2)$
2	L'expression $5x(x-3) - 7(x-3)$ peut être	factorisée par 5x	développée	factorisée par $(x-3)$
3	(5x - 9)(2x - 1) est égal à	$10x^2 + 9$	$10x^2 - 23x - 9$	$10x^2 - 23x + 9$
4	$(x+5)^2$ est égal à	$x^2 + 10x + 25$	$x^2 + 25$	$x^2 + 10x + 10$
5	$(3x-1)^2$ est égal à	$9x^2 + 6x - 1$	$3x^2 - 6x + 1$	$9x^2 - 6x + 1$
6	(7 - 3x)(7 + 3x) est égal à	$7^2 - 3x^2$	$49 - 9x^2$	$14 - 9x^2$
Pou	r les questions 7 et 8, on considè	re l'expression : $E =$	(3x+5)(x-2)-(x-2)	(x + 17)
7	Une expression développée et réduite de <i>E</i> est :	$2x^2 - 16x + 24$	$2x^2 + 14x - 44$	(x-2)(2x-12)
8	Une expression factorisée de <i>E</i> est :	$2x^2 - 16x + 24$	(x-2)(2x+22)	(x-2)(2x-12)
Pou	r les questions 9 et 10, on consid	ère l'expression : $F =$	$(2x-1)^2 - (3x+5)(2x$	- 1)
9	Une expression développée et réduite de <i>F</i> est :	$-2x^2 + 3x - 4$	$-2x^2 - 11x + 6$	$-2x^2 - 7x + 6$
10	Une expression factorisée de F est :	(2x-1)(3x-4)	(2x-1)(-x+4)	(2x-1)(-x-6)
11	$25x^2 - 16$ est égal à	$(5x)^2 - 4^2$	(5x-4)(5x+4)	$(5x-4)^2$
12	Une expression factorisée de $16x^2 - 8x + 1$ est :	8x(2x-1)+1	$(4x-1)^2$	$(4x+1)^2$

QCM 4 : Calcul littéral

1	L'expression développée de $(6x-5)^2$ est :	$36x^2 - 25$	$6x^2 - 60x + 25$	$36x^2 - 60x + 25$
2	L'expression développée de $(4x-3)(x-5)$ est :	4 x ² + 15	$4x^2 - 23x - 15$	$4x^2 - 23x + 15$
3	L'expression développée de $x(x+4)-2$ est :	$x^2 + 4x - 2$	x²+ 2 x	x²+ 2

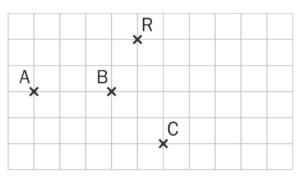
4	L'expression factorisée de $(x+5)^2+(x+5)(2x-3)$ est :	(x+5)+(3x+2)	(x+5)(3x+2)	(x+5)(2x-2)
5	L'expression factorisée de 25 x ² - 9 est :	(25x-3)(25x+3)	(5x+3)(5x-3)	$(5x-3)^2$
6	L'expression factorisée de 4 x ² -9 x est :	(2x+3)(2x-3)	x(4x-9)	Pas factorisable

7	Le nombre 0 est solution de l'équation :	$x^2 + 8 = 3x - 8$	6 x + 5 = 3 x + 8	6x+5=3x+5
8	L'équation $(4x-3)(x+4)=0$ a pour solutions :	$-4 \text{ et } \frac{3}{4}$	$-\frac{3}{4}$ et 4	$-4 \text{ et } \frac{4}{3}$
9	Voici un programme de calcul : - choisir un nombre ; - l'élever au carré ; - enlever 10 ; - écrire le résultat. Ce programme donne 15 lorsqu'on choisit au départ :	le nombre 25	les nombres -5 ou 5	uniquement le nombre 5


QCM 5 : Géométrie

Numéro de la question	Questions		Réponses proposées	
1	L'égalité $RT^2 = RU^2 + TU^2$ correspond au triangle :	U TR	T R	$\vdash \bigvee^{\square}$
2	Si $KL^2 + LP^2 = KP^2$, alors le triangle KLP est :	rectangle en P	rectangle en K	rectangle en L
	(IN)//(HM) Le théorème de Thalès permet d'écrire :	$\frac{IN}{HM} = \frac{TM}{TN} = \frac{TI}{TH}$	$\frac{IH}{HT} = \frac{MN}{TM} = \frac{HM}{IN}$	$\frac{TI}{TH} = \frac{TN}{TM} = \frac{IN}{HM}$

Travail n°6: Translation:


EXERCICE 1:

a. Reproduire la figure ci-dessous et tracer l'image A'B'C' du triangle ABC par la translation qui transforme A en A'.

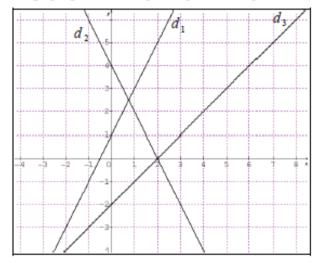
b. Quelle est la nature du quadrilatère BB'C'C ? Justifier.

EXERCICE 2:

- a. Reproduire la figure et placer l'image S du point R par la translation qui transforme A en B.
- b. Placer l'image T du point S par la translation qui transforme B en C.
- c. Quelle est la nature du quadrilatère ARTC ? Justifier.

PARTIE A

Utiliser le graphique ci-dessous pour répondre aux questions 1, 2et 3.


La ionction	f est representee graphiquement par la courbe &.
	\
1 1 1	16
1: : : :	
HH	· 1- 5+!!+
1 1 1	\ 4 - -
	-1
1: : :	
iii	:
1: : :	
	24 - -
L	
1: : : :	
	1 0 1 2 3 4 5 6 7 8 9 10
-H -D -F -I	T 0 / T 3 3 4 3 5 1 9 3 TIO.
Tillia illi	
1 ! ! ! !	_ ! \!\!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!!!!!	
	· 3t i i i i i i i i i i I

1	L'image de 2 par f'est égale à :	0	-2	4
2	Le point A de coordonnées (3 ; -1) est sur la courbe C , donc :	f(-1)=3	f(3)=-1	f(x)=3x-1
3	1 est un antécédent de :	-1	3	0,25

PARTIE B La fonction g qui intervient dans la question 4, 5 et 6 est définie par : $g: x \mapsto x^2 - x$

4	L'image de 6 par la fonction g est :	30	3	Impossible à calculer
5	−3 est un antécédent par g de :	6	-6	12
6	Le point de la courbe représentative de g d'abscisse 1 a pour ordonnée :	0	-1	2

PARTIE C Utiliser le graphique ci-dessous pour répondre aux questions 7, 8 et 9.

7	La droite d_2 a comme ordonnée à l'origine :	-2	2	4
8	La droite d_{3} admet comme coefficient directeur :	1	-1	2
9	La droite d_{1} représente une fonction h définie par :	h(x)=x-2	h(x) = 2x + 1	h(x) = -2x + 4

QCM 8 : Fonctions

		A	В	C	D
1	Soit g la fonction telle que : $g(x) = \frac{x+2}{x}$	$g(-4) = \frac{-2}{-4}$	$g(-4) = -\frac{1}{2}$	$g(-4) = \frac{1}{2}$	$g(-4) = \frac{3}{2}$
2	Soit h la fonction telle que :	L'image de 4 est 8	L'image de 0 est 2	L'image de 8 est 4	L'image de 2 est 0
3	$h: x \mapsto x(x-2)$. Par cette fonction:	−3 est un antécédent de 15	195 est un antécédent de 15	5 est un antécédent de 15	15 est un antécédent de 15
4	Soit le tableau de valeurs d'une fonction k:	L'image de -1 est 1	L'image de 0 est 1	L'image de 1 est -1	L'image de 1 est 1
5	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 est un antécédent de -2	−1 est un antécédent de −2	-2 est un antécédent de 1	1 est l'antécédent de -2
6	Voici la représentation graphique d'une fonction f pour x compris entre -3 et 9	L'image de 2 par la fonction f est 2.	L'image de 0 par la fonction f est 2.	L'image de 0 par la fonction f est 3.	L'image de 3 par la fonction f est 0.
7	-3-2-10 1 2 3 4 5 6 7 8 9 -3-2-10 2 3 4 5 6 7 8 9	8 est un antécédent de 2 par f	2 est un antécédent de 2 par f	0 est un antécédent de 2 par f	4 est un antécédent de −2 par f


QCM 9 : Probabilités

QCM (il peut y avoir plusieurs réponses exactes)

	<u>veni</u> (ii peni) men pinatana repenita a	A	В	C	D
1	Pour un dé à six faces, « on obtient 4 » est :	une issue	un évènement	un évènement élémentaire	une probabilité
2	Pour un dé à six faces, « on obtient un nombre entier » est un évènement :	élémentaire	impossible	peu probable	certain
3	On lance deux dés et on calcule la somme de leurs faces supérieures. Cette expérience donne :	12 issues	11 issues	10 issues	6 issues
4	Si, pour une pièce de monnaie, on a $p(\ll Face \gg) = p(\ll Pile \gg) = 0.5$, alors cette pièce	n'est pas truquée	vaut 50 centimes d'euro	est truquée	est équilibrée
5	La probabilité d'un évènement peut être égale à :	$\frac{7}{11}$	-0,35	1,002	1
6	La probabilité qu'un évènement ne se réalise pas est trois septièmes, alors	$p(A) = \frac{3}{7}$	$p(A) = \frac{4}{7}$	$p(A) = \frac{4}{10}$	$p(A) = \frac{7}{4}$
7	pour un dé à 6 faces, la probabilité d'obtenir un nombre impair est :	égale à 0,5	une fois sur deux	égale à $\frac{1}{6}$	égale à $\frac{3}{6}$
8	On tire une boule d'une urne contenant 6 boules rouges et 3 boules bleues. L'évènement « on obtient une boule bleue » a pour probabilité :	0	<u>6</u> 9	$\frac{1}{3}$	3 6

QCM 10: Fonctions affines

		A	В	C
1	Un exemple de fonction affine est	$f: x \mapsto 7x - 5$	$f: x \mapsto 7x^2$	$f: x \mapsto -5$
2	Une fonction $g: x \mapsto 5x - x$ est une fonction	affine	linéaire	constante
3	La fonction $k: x \mapsto 4x - 3$ correspond au processus :	Je soustrais 3, puis je multiplie par 4.	Je multiplie par 4, puis j'ajoute —3	Je multiplie par 4, puis je soustrais 3.
4	Soit: $x \mapsto 2x - 5$. L'image de -2 par f est:	-5	-9	-1
5	Soit: $x \mapsto 2x - 5$. L'antécédent de 15 par f est :	10	25	-10
6	La représentation graphique de la fonction $f: x \mapsto -3x - 5$ a pour :	coefficient directeur –5	coefficient directeur —3	Ordonnée à l'origine —5 .
7	La représentation graphique de la fonction $f: x \mapsto -7x + 4$ est une droite passant par :	Le point $L(1; -3)$	Le point $K(-2; -10)$	Le point <i>P</i> (3; –17)
8	La représentation graphique de la fonction affine telle que f(1) = 5 et $f(3) = 2$ a pour :	coefficient directeur $-\frac{3}{2}$	coefficient directeur $\frac{3}{2}$	coefficient directeur $-\frac{2}{3}$

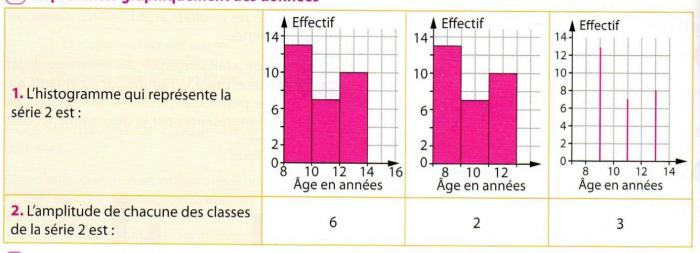
QCM 11: Statistiques

On considère les deux séries statistiques suivantes.

Série 1 : Nombre de buts marqués lors d'un tournoi de football

Nombres de buts	1	2	3	4	5	6	7
Nombres de matchs	2	5	3	1	2	1	1

Série 2 : Âges des enfants d'une colonie de vacances


Âge a en années	8 ≤ <i>a</i> < 10	10 ≤ <i>a</i> < 12	12 ≤ a < 14
Nombre d'enfants	13	7	10

Réponse A

Réponse B

Réponse C

1 Représenter graphiquement des données

2 Calculer une moyenne

1. La moyenne de la série 1 est :	48 15	4	8
2. La moyenne de la série 2 est :	10,8 ans	14 ans	11 ans

3 Déterminer une médiane, calculer une étendue

1. L'étendue de la série 1 est :	4 buts	7 buts	6 buts
2. La médiane de la série 1 est :	4 buts	3 buts	1 but
3. L'étendue de la série 2 est :	6 ans	2 ans	13 ans
4. Ma médiane est égale à 8, mon étendue est égale à 7. Qui suis-je ?	6 – 7 – 13 – 9	8-8-7-8-7	9-8-2-8-7

Pour ceux qui veulent en faire plus :

OPERATIONS SUR LES NOMBRES EN ECRITURE FRACTIONNAIRE:

RAPPELS DE COURS :

Addition et soustraction de deux nombres en écriture fractionnaire.

Pour calculer la somme ou la différence de deux nombres en écriture fractionnaire, on les réduit au même dénominateur, puis on effectue la somme ou la différence des numérateurs, et on garde le dénominateur commun.

Quels que soient les nombres a, b et c avec c non nul,

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}$$

2) Produit de deux nombres en écriture fractionnaire.

Pour calculer le produit de deux nombres en écriture fractionnaire, on multiplie les numérateurs entre eux, et on multiplie les dénominateurs entre eux.

Quels que soient les nombres a, b, c, et d, avec b et d non nuls,

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}.$$

Attention! Il faut penser à simplifier avant d'effectuer les produits au numérateur et au dénominateur.

3) Inverse d'un nombre non nul.

Définition : Soit a un nombre non nul, l'inverse de a est le nombre b tel que $a \times b = 1$. On le note $\frac{1}{a}$.

Propriétés : Pour tout nombre non nul a, l'inverse de l'inverse de a est égal à a, soit : $\frac{1}{\underline{1}} = a$.

Pour tous nombres a et b non nuls, l'inverse de $\frac{a}{b}$ est $\frac{b}{a}$.

4) Quotient de deux nombres en écriture fractionnaire.

Diviser par un nombre non nul revient à multiplier par son inverse.

Quels que soient les nombres a, b, c et d avec b, c et d non nuls,

$$\frac{a}{b} = \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

EXERCICES:

Exercice 1 : Calculer et donner le résultat sous la forme d'une fraction irréductible. $A = \frac{-5}{7} + \frac{4}{21}$ $B = \frac{5}{72} - \frac{1}{9}$ $C = \frac{2}{3} \times \frac{1}{8}$ $D = \frac{-7}{9} \div \frac{6}{-14}$ $E = \frac{1}{6} + \frac{1}{6} \times \frac{7}{2}$

$$A = \frac{-5}{7} + \frac{4}{21}$$

$$B = \frac{5}{72} - \frac{1}{9}$$

$$C = \frac{2}{3} \times \frac{1}{8}$$

$$D = \frac{-7}{9} \div \frac{6}{-14}$$

$$E = \frac{1}{6} + \frac{1}{6} \times \frac{7}{2}$$

*Exercice 2 :

Pierre, Julie et Christine se partagent la fortune de leur père.

Pierre reçoit le tiers de cette fortune, Julie les deux cinquièmes et Christine hérite du reste.

Quelle fraction de la fortune de son père reçoit Christine ?

CALCUL LITTERAL:

RAPPELS DE COURS:

1) Vocabulaire:

Développer un produit signifie le transformer en une somme.

Factoriser une somme signifie la transformer en un produit de facteurs.

Distributivité de la multiplication sur l'addition et la soustraction :

Quels que soient les nombres a, b, c, d et k:

$$k \times (a+b) = k \times a + k \times b$$

$$k \times (a-b) = k \times a - k \times b$$

$$(a+b)(c+d) = a \times c + a \times d + b \times c + b \times d$$

Exercice 1:

Développer et réduire les expressions suivantes :

A = (2 x - 3) (5 x - 4)	B = 2 x (5 x - 3) - 7	C = 3 x - (x - 1) - (x + 7) (x + 3)
$D = (x + 5)^2$	E = (6 + 7 x) (6 - 7 x)	$F = (4 x - 1)^2$

Exercice 2:

Après avoir identifié le facteur commun, factoriser les expressions suivantes :

•	,	
$A = x^2 + 2x$	$B = 7 x (x - 4) + (x - 4)^{2}$	$^{*}C = (x + 1) (2 x + 5) - (x + 1) (3 x + 4)$
$D = 9 x^2 + 3 x$	*E = (2 - x) (3 x + 1) + (3 x + 1)	

*Exercice 3:

Effectuer sans la calculatrice et astucieusement les calculs suivants (Rédiger les intermédiaires).

	1		,
$D = 48 \times 99$	$E = 57 \times 101$	*F =	: 103 ²

CALCULS AVEC LES PUISSANCES:

Définition : Soit a un nombre et n un nombre entier naturel.

 1^{er} cas : Si $a \neq 0$, la puissance d'exposant n du nombre a est le nombre noté a^n et défini par :

$$a^0 = 1$$
 et $a^1 = a$ si $n \ge 2$, alors a^n est le produit de n facteurs tous égaux à a : $a^n = \underbrace{a \times a \times ... \times a}$

La puissance d'exposant -n du nombre a est le nombre noté a^{-n} et défini par : $a^{-n} = \frac{1}{a^{-n}}$

Autrement dit, le nombre a^{-n} est l'inverse de a^n . En particulier $a^{-1} = \frac{1}{n}$.

 $2^{\text{ème}}$ cas: Si a=0 et si n est un entier supérieur ou égal à 1, $0^n=0$.

Cas particuliers: les puissances de 10 Si n est un entier naturel, $\mathbf{10}^n = \mathbf{1} \underbrace{000...0}_{n \text{ zéros}}$; $\mathbf{10}^{-n} = \frac{1}{\mathbf{10}^n} = \underbrace{0,00...0}_{n \text{ zéros}}\mathbf{1}$

On peut généraliser les propriétés des puissances de 10 pour un nombre a tel que $a \neq 0$, et ainsi, quels que soient les entiers m et n :

 $a^n \times a^m = a^{n+m}$; $\frac{a^n}{a^m} = a^{n-m}$; $(a^n)^m = a^{n \times m}$

11

L'écriture scientifique d'un nombre décimal non nul est l'unique écriture de ce nombre de la forme $c \times 10^p$: où c est un nombre qui ne présente qu'un seul chiffre avant la virgule et qui doit être non nul et p est un nombre entier relatif.

Exercice 1 : Compléter le tableau ci-dessous :

					_	_
x	10 ⁷	10 ⁻⁵	$\frac{1}{10^4}$	10 ⁻¹⁵ ×10 ¹¹	$\frac{10^{16}}{10^9}$	$\left(10^2\right)^3$
écriture décimale de x						

Exercice 2 : Donner l'écriture scientifique des nombres suivants :

A = 3789000 =

et B = 0.0000000037 =

Exercice 3 : Compléter ce tableau par l'écriture scientifique de chacune des distances données en km :

Planète	Saturne	Mars	Uranus	Terre
Distance moyenne du soleil	14,3×108	228×10 ⁶	2 880 000 000	1,49×10 ⁸
Distance moyenne du soleil en écriture scientifique				

planète	Neptune	Vénus	Jupiter	Mercure
Distance moyenne du soleil	45 000 ×10 ⁵	11×10 ⁷	778×10 ⁶	$0,58 \times 10^{8}$
Distance moyenne du soleil en écriture scientifique				

Classer ces planètes de la plus proche à la plus éloignée du soleil :

*Exercice 4:

La masse d'un atome de carbone est égale à $1,99 \times 10^{-26}$ kg.

Les chimistes considèrent des paquets (appelés moles) contenant 6,022×10²³ atomes.

- a) Calculer la masse en grammes d'un tel paquet d'atomes de carbone.
- b) Donner une valeur arrondie de cette masse à un gramme près.

*Exercice 5: La vitesse de la lumière est d'environ $3 \times 10^8 \, m/s$. La distance Soleil-Pluton est de 5900 Gm et $1 \, \text{Gm} = 1 \, \text{Giga}$ mètre = $10^9 \, \text{m}$. Calculer le temps en heures mis par la lumière pour aller du Soleil à Pluton.

EQUATIONS:

Résoudre une équation d'inconnue x, c'est trouver toutes les valeurs possibles que l'on peut donner à x pour que l'égalité soit vérifiée.

a) Équations du premier degré.

and the product and the produc	
Exemple 1	Exemple 2
6x - 5 = 2	5x + 2 = 3x - 4
6x - 5 + 5 = 2 + 5	5x + 2 - 2 = 3x - 4 - 2
6x = 7	5x = 3x - 6
6x 7	5x - 3x = 3x - 6 - 3x
$\frac{-6}{6} = \frac{-6}{6}$	2x = -6
7	2x = -6
$x = \frac{1}{6}$	${2} = {2}$
7	x = -3
La solution est $\frac{7}{6}$.	La solution est -3 .

b) Équations-produits.

Un produit de facteurs est nul si et seulement si l'un, au moins, des facteurs est nul.

Exemple 1	Exemple 2	Exemple 3*
(3x-2)(-x+7)=0	(2-3x)(x-4)-(x-4)(5+2x)=0	2x(x-3) + 54 = (6-x)(9-x)
or un produit de facteurs est nul si	On factorise:	On développe et on réduit
et seulement si l'un, au moins, des	(x-4)[(2-3x)-(5+2x)]=0	$2x^2 - 6x + 54 = 54 - 6x - 9x + x^2$
facteurs est nul,	(x-4)(2-3x-5-2x)=0	$x^2 + 9x = 0$
donc $3x - 2 = 0$ ou $-x + 7 = 0$	(x-4)(-3-5x)=0	x(x+9) = 0
3x = 2 ou $-x = -7$	or un produit de facteurs est nul si et seulement	or un produit de facteurs est nul si et
$x = \frac{2}{3}$ ou $x = 7$	si l'un, au moins, des facteurs est nul,	seulement si l'un, au moins, des facteurs est nul, donc
x-3 ou x-7	donc $x - 4 = 0$ ou $-3 - 5x = 0$	x = 0 ou $x + 9 = 0$
L'équation a deux solutions :	$x = 4$ ou $x = -\frac{3}{5}$	x = 0 ou $x = -9$
$\frac{2}{3}$ et 7.	5	L'équation a deux solutions :
3 64 7.		0 et - 9
	L'équation a deux solutions : 4 et $-\frac{3}{5}$	

Exercice 1:

Résoudre les équations suivantes :

Trocodano noo oquanomo o	, an varies of		
3x - 1 = -13	-2x+5=8	5 x = 0	4 - x = 7
11 x - 3 = 2 x + 9	$\frac{x}{7} = -\frac{7}{4}$		(-2x-5)(3x+2)=0

*Exercice 2:

Au semi-marathon de Courson, les organisateurs décident de donner une somme d'argent aux trois premiers. Ils se mettent d'accord pour attribuer $\frac{3}{5}$ de la somme totale au vainqueur, $\frac{1}{3}$ au second et 200 \in au troisième.

Quelle est la somme totale qu'ils décident de distribuer ?

Exercice 3:

Le quadrilatère ABCD est un rectangle tel que :

AB = 20 cm et AD = 8 cm.

- $E \in [AD]$ et $M \in [CD]$;
- Le quadrilatère *EDMF* est un carré ;
- $G \in [AB]$ et $H \in [BC]$;
- Le quadrilatère GFHB est un rectangle.

On note DM = x cm.


- 1) Justifier que : 0 < x < 8.
- 2) Démontrer que l'aire en cm² de la partie grisée est égale à $2x^2 28x + 160$.
- 3) Justifier que $2(x-7)^2 + 62 = 2x^2 28x + 160$.
- 4) En déduire pour quelle(s) valeur(s) de x l'aire de la partie grisée est égale à 112 cm².

On donne le programme de calcul suivant :

- Ajouter 3
- Calculer le carré du résultat
- Soustraire 9
- Noter le résultat obtenu

- 2) Exprimer, en fonction de x, le résultat obtenu avec ce programme de calcul. En développant et réduisant cette expression, montrer que le résultat du programme de calcul est x² + 6x.
- 3) Quels nombres peut-on choisir pour que le résultat obtenu soit 0 ? Justifier

Exercice 5:

On considère l'équation (E) : (a + 3) (2 a - 5) = 5 a - 15.

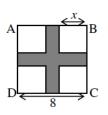
- 1) Le nombre 1 est-il solution de l'équation (E) ? Justifier.
- 2) Justifier que 2 est solution de l'équation (E).
- *3) Prouver qu'il existe un autre nombre solution de l'équation (E).

Exercice 6:

L'unité de longueur est le cm et l'unité d'aire est le cm².

On considère un carré ABCD de côté de longueur 8.

On enlève, comme indiqué sur la figure, quatre petits carrés superposables de côté de longueur x (0 < x < 4).


On obtient ainsi une croix coloriée en gris, on appelle A(x) son aire.

- 1) Montrer que $A(x) = 64 4x^2$.
- 2) Reproduire la feuille de calcul ci-contre.

Quelle formule doit-on inscrire dans la cellule B2?

3) Etirer la formule vers le bas.

En déduire pour quelle valeur de x l'aire de la croix grise vaut 15 cm².

4	А	В
1	x	$f(x) = 64-4x^2$
2	0	
3	0,5	
4	1	
5	1,5	
6	2	
7	2,5	
8	3	
9	3,5	
10	4	

FONCTIONS: Généralités:

RAPPELS DE COURS :

Une **fonction** est un processus qui, à chaque valeur du nombre x, associe un et un seul nombre y, noté f(x), appelé

l'image de x par f. On écrit $f: x \mapsto f(x)$.

On dit que x est un antécédent de y par f lorsque y = f(x).


La **représentation graphique de** f dans un repère du plan est l'ensemble de tous les points de coordonnées (x, f(x)).

Exemple 1 : le graphique ci-contre définit une fonction f, qui, à chaque nombre x compris entre 0 et 10, associe le nombre f(x) lu sur l'axe des ordonnées.

Ainsi f(2) = 3, f(10) = 2, $f(9,5) \approx 2,5$.

Les antécédents de 3 par f sont 2 et 8.

1,5 n'a qu'un seul antécédent par f et 6 n'a pas d'antécédent par f.

Exemple 2: $g: x \mapsto x(2-x)$. On peut calculer précisément les valeurs des images voulues.

Ainsi g(2) = 0, g(-50) = -2600.

Si x < 0 alors g(x) < 0.

Les antécédents de 0 par g sont 0 et 2.

х	-1	3	3,5	0	7	-2
h(x)	0	2	-2	2	-5,5	-1

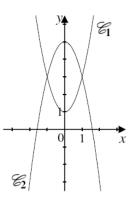
Exemple 3: le tableau de valeurs ci-contre définit une fonction h qui, à chaque nombre de la $1^{\text{ère}}$ ligne, associe le nombre de la $2^{\text{ème}}$ ligne et de la même colonne. Ainsi h(-1) = 0, h(7) = -5.5. Les antécédents de 2 par h sont 3 et 0. Lorsqu'une fonction est définie par un tableau, on ne connaît qu'un nombre déterminé de valeurs d'images et d'antécédents.

Exercice 1: *Vocabulaire*

On considère une fonction f définie pour tout nombre x et telle que f(2) = 5.

On note \(\mathbb{E} \) sa courbe représentative dans le plan muni d'un repère orthogonal.

Répondre en barrant les mauvaises réponses parmi « VRAI », « FAUX » et « On ne peut rien dire ».


<i>1</i> .	L'image de 5 par la fonction f est 2.	VRAI	FAUX	On ne peut rien dire
2.	L'image de 2 par la fonction f est 5.	VRAI	FAUX	On ne peut rien dire
<i>3</i> .	Un antécédent de 5 par la fonction f est 2.	VRAI	FAUX	On ne peut rien dire
<i>4</i> .	Un antécédent de 2 par la fonction f est 5.	VRAI	FAUX	On ne peut rien dire
<i>5</i> .	Un nombre dont l'image est 5 par la fonction f est 2.	VRAI	FAUX	On ne peut rien dire
6.	2 a pour image 5 par la fonction f.	VRAI	FAUX	On ne peut rien dire
<i>7</i> .	Un nombre dont l'image est 7 par la fonction f est 2.	VRAI	FAUX	On ne peut rien dire
8.	5 a pour antécédent 2 par la fonction f.	VRAI	FAUX	On ne peut rien dire
9.	2 a pour antécédent 5 par la fonction f.	VRAI	FAUX	On ne peut rien dire
<i>10</i> .	2 a pour image 7 par la fonction f.	VRAI	FAUX	On ne peut rien dire
<i>11</i> .	5 a pour image 2 par la fonction <i>f</i> .	VRAI	FAUX	On ne peut rien dire
<i>12</i> .	Le point de coordonnées (2; 5) appartient à &	VRAI	FAUX	On ne peut rien dire
<i>13</i> .	Le point de coordonnées (5 ; 2) appartient à &	VRAI	FAUX	On ne peut rien dire

Exercice 2: Lecture graphique

Sur le graphique ci-contre la courbe \mathscr{C}_1 représente une fonction f et la courbe \mathscr{C}_2 représente une fonction g, toutes deux définies pour tout nombre x.

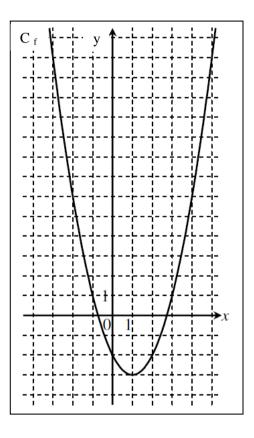
Répondre aux questions par lecture graphique (avec la précision permise par le tracé).

- 1) Quelle est l'image de 2 par la fonction g?
- 2) Quels sont les antécédents de 4 par la fonction g?
- 3) Pour quelles valeurs de x a-t-on f(x) = g(x)? Quelle est alors l'image de ces valeurs par f et g?

Exercice 3: Calcul d'images et d'antécédents

On considère les fonctions f et g définies pour tout nombre x par : f(x) = 2x - 4 et $g(x) = 4x^2$

- 1) Déterminer l'image de -3 par la fonction f.
- 2) Déterminer l'antécédent de 24 par la fonction f.
- 3) Déterminer l'image de 3 par la fonction *g*.
- 4) Déterminer le (ou les) antécédent(s) de 8 par la fonction g.

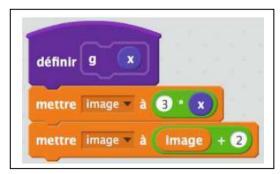

Exercice 4: Le graphique ci-contre représente la fonction f définie pour tout nombre x par : $f(x) = (x-1)^2 - 3$

Résolution par lecture graphique :

- 1) Quelles sont les images des nombres 1 et -2 par f?
- 2) Quels sont les antécédents par f du nombre -2?
- 3) Le nombre 3 admet-il des antécédents ? (expliquer votre réponse).

Résolution par le calcul:

- 1) Calculer l'image par f de $\overline{0}$ et de $\overline{2}$. Quel résultat retrouve-t-on ?
- 2) a) Montrer que rechercher les antécédents par f de 13 revient à résoudre l'équation $(x-1)^2 16 = 0$.
 - b) Montrer que, pour tout nombre x, on a : $(x-1)^2 16 = (x-5)(x+3)$.
 - c) En déduire les antécédents de 13 par f.

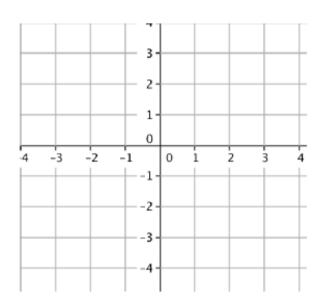

Exercice 5 : On considère une fonction f et on note \mathscr{C} sa courbe représentative dans le plan muni d'un repère orthogonal. Compléter le tableau suivant :

Égalité	Description : image ou antécédent	Point appartenant à &
f(-2) = -1	\dots est l'image de \dots par f	(;)∈ &
f()=	\dots est l'image de \dots par f	(5;7)∈ %
f()=	4 est un antécédent de -10 par f	(;)∈ &
f()=	\dots est un antécédent de \dots par f	(-3;2)∈ €

Exercice 6 : On considère le bloc de programme suivant :

- 1) Si le nombre choisi au départ est 5, que renvoie ce programme ?
- 2) Donner l'expression algébrique de la fonction g définie par le bloc ?
- 3) La fonction g ainsi définie est-elle une fonction linéaire ou affine ?
- 4) Quelle est l'image de 0 par la fonction g?
- 5) Quelle est l'image de -2 par la fonction g?

;

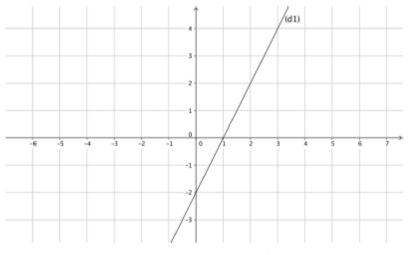

Exercice 7:

Dans le repère ci-dessous, représenter graphiquement les fonctions suivantes :

$$f_1: x \mapsto x - 4$$

$$f_2: x \mapsto -2x + 3$$

$$f_3: x \mapsto 2$$



Exercice 8:

À partir du repère ci-contre :

- Lire l'expression de la fonction f₁ représentée graphiquement par la droite (d₁): f₁(x) =
- 2) Voici le tableau de valeurs d'une fonction x -2 affine f_2 . $f_2(x)$ 4

Placer les points correspondants dans le repère ci-contre puis tracer la droite représentant f_2 puis lire l'expression de cette fonction : $f_2(x) =$

- *Exercice 9: L'énergie cinétique Ec, exprimée en Joules (J), dégagée par un véhicule de 1000 kg à une vitesse v, exprimée en m/s, est donnée par la formule $E_c(v) = 500v^2$.
 - 1) Quelle est l'énergie cinétique de ce véhicule lorsqu'il roule à 10 km/h ?
 - 2) À quelle vitesse (en m/s puis en km/h) roule ce véhicule lorsqu'il dégage une énergie cinétique de 200 000 joules?

16

PROBABILITES:

RAPPELS DE COURS :

Une expérience est dite aléatoire lorsqu'on ne peut pas en prévoir avec certitude le résultat.

L'univers associé à une expérience aléatoire est l'ensemble de tous les résultats possibles, appelés **issues**, de cette expérience. On le note souvent Ω . Il peut être fini ou infini.

Tout ensemble d'issues est appelé événement.

Un événement élémentaire contient une seule issue.

L'événement contraire d'un événement A est noté \overline{A} , et est l'ensemble des issues de l'univers Ω n'appartenant pas à A.

L'événement certain contient toutes les issues. L'événement impossible ne contient aucune issue.

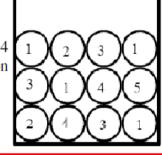
On considère une expérience aléatoire :

À chaque événement élémentaire, on associe un nombre compris entre 0 et 1.

Lorsque la somme de tous ces nombres est égale à 1, on dit que l'on a défini une probabilité.

Le nombre associé à chaque événement élémentaire est alors appelé la probabilité de celui-ci.

La **probabilité d'un événement A** (autre que l'événement impossible) est notée p(A) et est égale à la somme des probabilités des événements élémentaires qui le composent. La probabilité de l'événement impossible est égale à 0. On a, pour tout événement $A: 0 \le p(A) \le 1$


Lorsque les événements élémentaires ont la même probabilité, on dit que l'on est dans une **situation d'équiprobabilité**, et dans ce cas, si A est un événement,

probabilité de A =
$$\frac{\text{nombre d'issues de A}}{\text{nombre total d'issues}}$$

Exemple:

Une urne contient des boules indiscernables au toucher qui portent les numéros 1, 2, 3, 4 et 5 (voir schéma ci-contre). Les résultats seront donnés sous la forme d'une fraction irréductible.

- 1) Quelle est la probabilité de tirer une boule portant le numéro 1 ?
- 2) Quelle est la probabilité de tirer une boule ne portant pas le numéro 1 ?
- 3) Quelle est la probabilité de tirer une boule portant un numéro impair ?

<u>Exercice 4</u>: Dans un laboratoire, on élève des souris dont voici des caractéristiques :

- Compléter le tableau.
 - Dans la suite de l'exercice les résultats seront arrondis au centième.

Mâle	Femelle	Total
30		
	8	
37		120
	Mâle 30	Mâle Femelle 30 8 37

- 2) On prend une souris parfaitement au hasard pour une expérience.

 - c) Calculer la probabilité de sélectionner un mâle gris :

*Exercice 5: On dispose de morceaux de papiers identiques. On écrit 1 sur l'un d'eux; on écrit 2 sur deux autres; on écrit 3 sur trois autres, jusqu'à ce qu'on écrive 10 sur dix autres papiers. On place tous ces papiers dans une urne et on en tire un au hasard. De combien de morceaux de papiers dispose-t-on?

Quelle est la probabilité de l'événement « le nombre obtenu est pair »?

<u>Exercice 7</u>: PILE OU FACE: On a lancé 4 fois de suite une pièce de monnaie non truquée et chaque fois le résultat a été face. Si on lance la même pièce une fois de plus, laquelle des affirmations suivantes sera correcte?

A: « On a autant de chances d'obtenir pile que face. »

B: « On a plus de chances d'obtenir pile. »

C: « On a plus de chances d'obtenir face. »

D: « On ne peut pas obtenir à nouveau face. »

ALGORITHMIQUE:

Exercice:

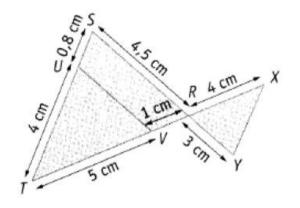
Que va tracer lelutin dans chacun des programmes suivants ? Justifier.


```
quand est cliqué
effacer tout
aller à x: 0 y: 0
stylo en position d'écriture
répéter 3 fois
avancer de 100
tourner de 120 degrés
relever le stylo
```

GEOMETRIE PLANE:

1) théorème de Thalès

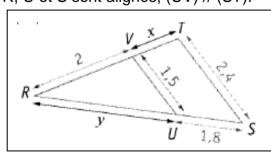
Exercice 1:

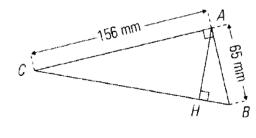

Sur la figure ci-contre:

les points T, V, R et X sont alignés ;

les points T, U et S sont alignés ;

les points S, R et Y sont alignés.


- 1) Démontrer que (XY) est parallèle à (ST) et en déduire la longueur XY .
- 2) Démontrer que (UV) est parallèle à (SR) et en déduire la longueur UV .


Exercice 2:

Sur la figure ci-contre : les points R, V et T sont alignés; les points R, U et S sont alignés; (UV) // (ST).

- 1) On note x = VT.
- a. Montrer que le nombre x vérifie l'équation : $\frac{2+x}{2} = \frac{2,4}{1.5}$.
- b. En déduire la longueur x.
- 2) On note y = RU.
- a. Montrer que le nombre y vérifie l'équation : 1,5 (y + 1,8) = 2,4 y.
- b. En déduire la longueur y.

2) théorème de Pythagore

- 1) Reproduire la figure en vraie grandeur.
- 2) Calculer BC.
- 3) Exprimer l'aire du triangle ABC en fonction de AC et AB, puis la calculer
- 4) Exprimer la même aire en fonction de BC et AH. En déduire que AH = 60 mm.
- 5) Calculer alors CH puis HB.